2t^2+5=29

Simple and best practice solution for 2t^2+5=29 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2t^2+5=29 equation:



2t^2+5=29
We move all terms to the left:
2t^2+5-(29)=0
We add all the numbers together, and all the variables
2t^2-24=0
a = 2; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·2·(-24)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*2}=\frac{0-8\sqrt{3}}{4} =-\frac{8\sqrt{3}}{4} =-2\sqrt{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*2}=\frac{0+8\sqrt{3}}{4} =\frac{8\sqrt{3}}{4} =2\sqrt{3} $

See similar equations:

| 12/18x+102/18=7 | | -3(4x-2)+8x=-4x+6 | | -3(4x-2)+8x=-4x+8 | | -3(4x-2)+8x=4x+6 | | -3(4x-2)+8x=4x+8 | | 6y+4=y-24 | | +4x+2+50=6x+12 | | 6x9= | | 6x+12+4x+2=50 | | -2(8-3x)+2x=-16+8x | | -29+5v=6(v-4) | | -3(6b-4)+4b=-36-6b | | -2r-6(5r-4)=24-r | | 5.8s-6.4=2.4+6.8s | | m^2=6m+55 | | -3(2-x)=-x+26 | | 2(1+x)=3x+3 | | -2(v+5)=4v-6+2(3v+3) | | 4j+2=4 | | -3(4x-2)+8x=-20+6 | | -(2x+5)=11+6x | | 9(v-5)=-5-31 | | 3(x-2)+2(x+1)=-15 | | 3+8m=8m+3 | | 5^2=6x-7 | | 5x^2-16=-4x | | 11r=-22 | | -19-3a=5-4(2a+1) | | 5x^-16=-4x | | 630/x+28=18.50 | | 4x+9+25=180 | | 6r+133=-10r |

Equations solver categories